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ABSTRACT
Previous work using U.S. data has identified generational shifts, 
reflected in inter-cohort changes, in the incidence and prevalence 
of diseases in older ages. This study extends previous findings to 
England by examining similar results in memory complaints, heart 
conditions, stroke, diabetes, lung disease, and cancer using data from 
the English Longitudinal Study of Ageing (ELSA). We fit Cox propor-
tional hazard models to the first eight waves (2002–2016) of the ELSA 
sample (n = 18,528). In addition to exploring shifts in disease inci-
dence we also examine shifts in disease mortality. Both general and 
sex-related differences are examined. Disease incidence has 
increased for later-born cohorts in England, replicating similar trends 
in the U.S. Not all diseases showed differences between men and 
women, but when differences were identified, women had lower risks 
for disease. In comparison to the U.S. sample, disease trends in 
England are more negative (i.e. accelerated failure times) for more 
recently born cohorts. These results showing increasing incidence of 
disease among the later-born cohorts suggest the possibility of 
increased disease burden in coming years.

Introduction

Older adults report increasing disease diagnoses over time (Hung et al. 2011). In 
a U.S. sample, disease burden increased across cohorts (Crimmins et al. 2019). Here, we 
perform a cross-national replication and extension of those findings from Crimmins et al. (a 
related all-disease investigation across five countries in Europe is presented in Dolejs 2015). 
Using survival analyses, we examine cohort trends in disease incidence and mortality 
among participants in the English Longitudinal Study of Ageing (ELSA; Clemens et al.  
2019). We examine the incidence and associated mortality in relation to specific diseases, 
including dementia, stroke, heart conditions, lung disease, diabetes, and cancer. These 
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diseases represent the most common causes of mortality; even small changes in their 
incidence could spark large changes in future disease burden (Brookmeyer et al. 2007).

Some of these diseases have shown increased incidence, prevalence, or both, over 
time, while others have not. For example, diabetes has increased in both incidence and 
prevalence, in parallel with obesity rates (Menke et al. 2015; Passa 2002; Skyler and 
Oddo 2002). Conversely, prior results point to decreased incidence in stroke, dementia 
and Alzheimer’s disease, although changes in diagnostic criteria may mask some of the 
actual changes (Cognitive Function and Ageing Studies (CFAS) Collaboration et al.  
2016; Grasset et al. 2016; Koton et al. 2014). Despite (potentially) decreasing incidence, 
the burden of these diseases is forecast to increase (Brookmeyer et al. 2007). 
Furthermore, research has linked dementia and Alzheimer’s disease incidence to cardi-
ovascular diseases (Newman et al. 2005) and excess weight (Ma et al. 2020). As a result, 
given the large shifts in obesity over time, Alzheimer’s disease and dementia incidence 
may increase. Research has shown increasing trends in disease related to obesity 
(Atlantis, Lange, and Wittert 2009; 2017), and as the current population ages we may 
expect worsening general health.

This study aims to replicate and extend the findings of Crimmins et al. (2019), 
providing a cross-national comparison of results from the USA and England. We are 
particularly interested in cohort differences in disease incidence and mortality, and 
whether or not more recent cohorts exhibit changes in disease burden. Justification 
for a focus on cohort comparisons can be found across the literature (e.g., see Clouston 
et al. 2021; Soneji 2006; Zheng and Cheng 2018). Recent and similar cohort-based work 
was reported for grip strength at older ages in O’Keefe et al in the ELSA sample (O’Keefe 
et al. 2022), and for cognitive aging using an array of cognitive variables in the ELSA 
sample in O’Keefe et al. (2023) and in the National Health and Aging Trends Study in 
Zhang et al. (2024).

Methods

Participants

Data came from the English Longitudinal Study of Aging (ELSA). The data consist of an 
approximately representative sample of people living in England aged 50+ (Mean =  
67.08, SD = 9.82). Data collection began in 2002 and continues on a biennial basis. 
Refreshment samples, to account for attrition and allow the continuation of the study, 
were added in the third, fourth, sixth, seventh and ninth waves (see the supplemental 
material for flowchart). We limited analyses to the 18,528 core subjects from waves 1–8 
(including core members from refreshment samples), with data in any wave. ELSA 
collected data not only on the primary “core” sample, but on additional subjects as 
well, such as spouses of the core members. It was these additional subjects that we 
excluded in order to maintain approximate population representativeness. Note that we 
did not apply sampling weights in our analyses, as they were designed for cross-sectional 
rather than longitudinal analyses. There are, of course, threats to the external validity of 
the ELSA sample, caused by attrition and left censoring/truncation (earlier death/dis-
ability) of respondents, which can introduce selection bias. Although this study capita-
lizes on external validity emerging from a national probability sample, the primary focus 
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is on internal validity. After restricting our analyses to the core members from these 
waves, 54% of the sample were female and 96% were white.

Measures

Demographics
We included three demographic variables: age, sex, and birth date. Age and birth date 
essentially measure the same demographic variable and were measured using the year of 
birth, and the whole number age the respondent reported during their interview. We used 
birth year as the relevant cohort measure. For cohorts from 1912–1963 there were over 120 
observations for each cohort. Data were also included for cohorts from 1908–1912 and for 
1964, but there were substantially fewer observations (<40). Sex was measured as a binary 
variable, with Male = 0 and Female = 1.

Chronic Diseases
Participants reported their disease status (whether they had ever been told by a physician 
that they had a given disease) at every wave. We selected a subset of diseases for analysis: 
Alzheimer’s disease, dementia, memory complaints, heart conditions, stroke, diabetes, lung 
disease, and cancer. According to the documentation associated with ELSA, diabetes 
includes both Type I and Type II diabetes. All disease states were self-reported. Self- 
reports of dementia, Alzheimer’s disease, and memory problems diagnoses were collapsed 
into a single variable, because of their overlapping symptomatology and to increase statis-
tical power; this variable is referred to here at “dementia.” Table 1 provides the overall 
prevalence of these diseases in our sample (i.e., the number of unique cases reported). As we 
are using only the core participants, who were randomly selected from the population, the 
analytic sample is approximately population representative, up to attrition and left censor-
ing/truncation (earlier death/disability that interferes with later reports).

Data Analysis

Our approach differed from prior work in order to better account for interval and left 
censoring. Interval censoring occurs when the exact date of disease onset is unknown. In 
our case, the survey design only allows us to determine disease onset within a two-year 
window (i.e., between survey waves). Left censoring occurs when disease onset occurs prior 
to the first interview date (but the participant still enters the study). Left censoring stands in 
contrast to left-truncation, where disease onset prevents participation in the study (e.g., 
because participants die from disease prior to study entry). We used a semi-parametric Cox 
model (available in the icenReg package in R), to manage these censoring issues in our 

Table 1. Number of observed disease diagnoses by disease.
Dementia Heart Conditions Stroke Diabetes Lung Disease Cancer

total cases 491 4233 1183 2070 1429 2025
percent of participants 0.03 % 0.26 % 0.07 % 0.13 % 0.09 % 0.13 %
total observations 16057 16058 16058 16058 16057 16057

^^ This table shows total observed cases, the percent of participants who reported a case, and the number of participants 
with available data, for each condition studied.
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disease incidence models. Birth year was scaled so that a one-unit increase represented 
a one-decade change in time, and was centered at 1930. In addition, we used the natural 
scale of age measured in years, as the time-to-event. The model can be seen in equation (1). 
The model presents the linear predictor aspect of the model, the baseline hazard of the 
model is omitted. All models were fit using the “survival” and “icenReg” packages 
(Anderson-Bergman 2017; R Core Team 2021; Therneau 2021). There are two primary 
types of models used: those that predict a condition (dementia, cancer, diabetes, etc.) and 
those that predict mortality. In the mortality models, condition becomes a predictor because 
we want to know if having a condition increases the likelihood of death, and how that varies 
across cohorts. Cohort represents birth year (as scaled above), and is treated as a continuous 
quantitative variable in these models. 

For mortality we used a model predicting death from sex (Male = 0, Female = 1), birth 
cohort, disease status (condition), and the interaction of cohort and disease status (equation 
(2)). These models allow us to evaluate if disease increased the likelihood of death and if the 
effect of disease varied across cohort. For all mortality models, disease status was evaluated 
at study entry. 

Results

To assess the proportionality assumption of our incidence models, Turnbull estimates 
(similar to Kaplan–Meier curves) were created for each outcome variable for sex and 
a discretized cohort variable. The resulting hazards were plotted and visually inspected, 
and results suggested that hazards were approximately proportional. The only notable 
exceptions were heart disease between cohorts, and cancer between men and women. 
These exceptions were not thought to be substantial enough to warrant a different modeling 
approach. Table 2 provides the hazard ratios and associated confidence intervals for the 
disease incidence models. Table 3 displays coefficients and associated confidence intervals 
for the mortality models. The general finding is that later-born generations tend to have 
increased disease risk. When sex differences were observed, they favored women (i.e., 
women always had a higher survival time if there were statistically significant sex 

Table 2. Results from interval-censored cox models for disease 
incidence.

Cohort sex (Male as reference)
Dementia 2.23 (1.95, 2.56) 0.94 (0.78, 1.13)
Stroke 1.23 (1.14, 1.31) 0.74 (0.66, 0.83)
Heart conditions 1.32 (1.27, 1.37) 0.78 (0.73, 0.82)
Diabetes 1.55 (1.47, 1.62) 0.72 (0.66, 0.78)
Lung Disease 1.34 (1.27, 1.42) 0.79 (0.72, 0.88)
Cancer 1.76 (1.67, 1.85) 1.06 (0.97, 1.16)

Note that the table presents the exponentiated model coefficients (and associated 
confidence intervals in parenthesis), which can be directly interpreted as hazard 
ratios. Models were fit separately for each condition listed. The Dependent 
Variable is the disease on the row, within Equation 1.
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differences). Figure 1 shows the expected prevalence of diseases (the plots presume that 
there are no deaths) for men and women across three generations, each born 10 years apart. 
In the figure “early” represents the cohort born in 1920, “middle” is the cohort born in 1930, 
and “late” is the cohort born in 1940. Across the mortality models, the main effects of cohort 
and sex were relatively constant (approximately 5.70 for cohort and .79 for sex), because the 
mortality models used approximately the same data in calculating such effects. Of particular 
interest is the interaction between cohort and condition in each mortality model. 
A mortality model was fit in which Sex was omitted from the model, see Table 4; results 
were almost identical to results when Sex was in the model.

Dementia

Alzheimer’s disease, dementia, and memory problems, combined into “Dementia” for 
these analyses, had a relatively low prevalence in our sample, with only 491 cases out 
16,057 observations. The inclusion of memory problems in this combined variable did 
not affect the prevalence in our sample, but it was retained so that all memory-related 
conditions were included in this single combination variable. In the interval-censored 
Cox model, the (exponentiated) linear effect of cohort was 5.75 (95% CI: 5.21, 6.36). The 
effect of sex was 0.68 (95% CI: 0.63, 0.74). More recently- born cohorts showed an 
increase in dementia diagnoses, but men and women were not substantially different in 
their rates of diagnosis. Mortality due to dementia is linked to increases in later-born 
cohorts with an interaction between condition and cohort such that later-born cohorts 
with dementia were at greater risk of mortality (interaction effect = 1.42; 95% CI: 
1.09,1.84). In a sensitivity analysis these findings were not substantially different when 
examining dementia alone or Alzheimer’s Disease alone, these analyses are presented in 
the supplemental material.

Stroke

Strokes were somewhat common in our sample, with 1183 reported out of 16,058 
observations, or approximately 1 in 16 people experienced a stroke at some point 

Table 4. Results from censored cox models for mortality accounting for disease diagnosis omitting sex 
from the model.

Cohort Condition Cohort X Condition

Dementia 5.81 (5.26, 6.42; 
p-value <0.001)

3.86 (2.77, 5.31; 
p-value <0.001)

1.49 (1.15, 1.92; 
p-value = 0.002)

Stroke 5.75 (5.21, 6.36; 
p-value <0.001)

2.23 (1.92, 2.56; 
p-value <0.001)

1.51 (1.31, 1.75; 
p-value <0.001)

Heart Conditions 5.70 (5.16, 6.30; 
p-value <0.001)

2.05 (1.88, 2.23; 
p-value <0.001)

1.35 (1.25, 1.48; 
p-value <0.001)

Diabetes 5.75 (5.21, 6.36; 
p-value <0.001)

1.70 (1.49, 1.92; 
p-value <0.001)

1.09 (0.96, 1.25; 
p-value = 0.18)

Lung Disease 5.64 (5.10, 6.23; 
p-value <0.001)

2.44 (2.16, 2.77; 
p-value <0.001)

1.54 (1.35, 1.73; 
p-value <0.001)

Cancer 5.58 (5.05, 6.17; 
p-value <0.001)

1.95 (1.72, 2.20; 
p-value <0.001)

1.40 (1.25, 1.58; 
p-value <0.001)

Note that the table presents the exponentiated model coefficients (and associated confidence intervals in parenthesis), which 
can be directly interpreted as hazard ratios. Models were fit separately for each condition listed.
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either during or prior to their participation in the study. The (exponentiated) effect for 
cohort was 5.70 (95% CI: 5.16, 6.30); later born cohorts were at higher risk. The effect 
of sex was .68 (95% CI: 0.63, 0.74). In this case, sex was a particularly strong indicator 
of risk, with women having a risk approximately equivalent to men born 15 years 
earlier (recall that earlier-born cohorts had lower risks). Mortality due to stroke 
appears to be linked to increases among later-born cohorts (interaction effect = 1.51: 
95% CI: 1.32, 1.73).

Figure 1a. Projected disease prevalence by sex and Cohort. Note: “Early” represents model implied 
trajectories for individuals born in 1920, “middle” the same for individuals born in 1930, and “late” is 
for individuals born in 1940. The x-axis is age, while the y-axis represents the proportion of individuals 
expected to still be disease free at a given age. 
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Heart Conditions

Heart conditions had a high prevalence in our sample relative to dementia and Alzheimer’s 
disease. There were 4233 reported cases of heart conditions in the ELSA sample (26.40% of 
the sample). The (exponentiated) effect of cohort was 5.64 (95% CI: 5.10, 6.30). Sex had an 
effect of .70 (95% CI: 0.64, 0.76). For mortality, as with the other conditions, there were 
higher rates of mortality due to stroke for the later-born cohorts (interaction effect = 1.35; 
95% CI: 1.23, 1.58).

Figure 1b. 
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Diabetes

Diabetes had a prevalence of 12.90% (n = 2070) in the sample. The (exponentiated) effect of 
cohort was 5.70 (95% CI: 5.16, 6.30). The effect of sex was 0.69 (95% CI: 0.64, 0.74). Being in 
a later born cohort was linked to increased mortality, the effect of mortality due to diabetes 
was not different across cohorts (unlike for previous diseases) with the interaction effect 
being 1.09 (95% CI: 0.96, 1.25).

Lung Disease

Lung disease was relatively common, with 8.90% (n = 1429) reporting lung disease. The 
(exponentiated) effect of cohort was 5.58 (95% CI: 5.05, 6.17). The effect of sex was 0.68, 
(95% CI: 0.62, 0.72). In the mortality model, the interaction effect between cohort and 
condition was 1.57 (95% CI: 1.39, 1.79).

Cancer

Cancer was relatively common, with 12.60% (n = 2025) of the sample having cancer at some 
point during or prior to the study. The (exponentiated) effect of cohort on incidence was 
5.58 (95% CI: 5.05, 6.17). The effect of sex was 0.67 (95% CI: 0.62, 0.72). The interaction 
effect of cancer and cohort on mortality was 1.39 (95% CI: 1.23, 1.58).

Discussion

We examined birth-cohort shifts in the U.K. in the incidence of chronic disease and 
a dementia cluster, and also mortalities associated with each disease (i.e., models for 
incidence, and models for mortality). Our findings suggest that, across a number of diseases, 
the incidence of disease has increased for later-born cohorts. Furthermore, mortality was 
found to be higher among later-born cohorts. As part of a broader tapestry of related 
findings, our results partially match the findings of Crimmins et al. (2019). Compared to the 
Crimmins et al. U.S. sample, the results of the present study are even more negative for 
more recently born cohorts in England, as we found higher incidence of diseases in later- 
born cohorts for more diseases. Our results concerning disease mortality were partially in 
line with previous work, although we did not find reduced mortality for cancer. It is worth 
noting that Crimmins et al. 2019 used a different analytical framework, discretizing the age 
and cohort variables. We provide analyses and results comparable to those of Crimmins 
et al. (2019) in our appendix, and these results more closely replicate the results of 
Crimmins et al. (2019). We also fit models dropping out Age, Sex, and both Age and Sex, 
and found relatively stable results. We note that their analytic method is subject to certain 
limitations, such as a high number of tied survival times, which are problematic in Cox 
proportional hazards model, and substantial information loss due to discretizing contin-
uous variables.

Extending our comparisons beyond the context of the U.S. we find that results are 
inconsistent across nations, even within nations at times. Our results broadly replicate 
the findings of Wennberg et al. (2023), who found that frailty had increased for men 
and women in Sweden. Although we did not examine frailty directly, findings of 
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increased disease prevalence would be expected with increased frailty. Examining heart 
disease, stroke, and dementia, Morovatdar et al. (2022) found age-related increases in 
prevalence, but generally no increase in incidence (once aging of the population was 
accounted for) in the Global Burden of Disease Study, which allowed examination of 
many countries simultaneously. Stephan et al. (2018) found that dementia incidence had 
declined somewhat, but this decline in incidence is not universal. Their findings were 
sometimes contradictory within country, and in one case results were contradictory 
within the same study. Finally, in the U.S. based Framingham Heart Study, dementia 
incidence was found to decline across a 30-year period (Satizabal et al. 2016). The 
Framingham Heart Study had the advantage of being able to ensure diagnostic consis-
tency across years, which is not controlled in ELSA.

Considering non-cognitive diseases, stroke, diabetes, cancer, heart conditions, and lung 
disease, a number of these diseases and conditions showed cohort shifts. Several of these 
diseases, such as heart conditions, stroke, and diabetes, have well known associations with 
obesity, which has shown a dramatic increase over time (2017). Hernández et al. (2021), 
found that obesity increased the odds of later-life disease clusters substantially, moreso, in 
fact, than nearly any other risk factor examined in their study. Atlantis, Lange, and Wittert 
(2009), stated that many chronic conditions could be avoided by avoiding obesity, in 
particular, diabetes and high-cholesterol. They found that cardiovascular disease and high 
blood pressure have not seen similar increases, attributed to increased and focused manage-
ment of those specific diseases. Cancer and lung disease have been associated with increases 
in obesity (Avgerinos et al. 2019; Colditz and Peterson 2018; Dixon and Peters 2018; Peters 
et al. 2018). Furthermore, some diseases related to obesity (e.g., diabetes and heart condi-
tions) are associated with increased risk of other disease diagnoses (e.g., dementia) 
(Armstrong et al. 2019; Zilkens et al. 2013), which we found to have also increased over 
time. Because of the design of our study, if rising rates of obesity were causing increased 
disease burden, it would appear as a cohort effect in our models (later born cohorts would 
become obese younger and would be obese for longer). Unfortunately, due to the design of 
the ELSA, it is not possible to directly test this hypothesis with these data. ELSA was 
inconsistent in their measurement of BMI-associated variables (weight and height), and 
we lack a measure of life-long exposure to high BMI (data are only available, at the earliest, 
at age 50 for core participants). Overall, however, our findings regarding diabetes are similar 
to findings in India (Nanditha et al. 2019) and Italy (Gnavi et al. 2018). In the Italian 
context, it was found that aging was partly responsible for increases in overall incidence (as 
would be expected in an aging population), but that changes in BMI were also partly, but 
not wholly, responsible for shifts in diabetes diagnoses. Although not a primary goal of the 
Framingham Heart Study, they also found increases in diabetes (Satizabal et al. 2016).

In the broader context of dementia research, our findings are somewhat unexpected. For 
example, Derby et al. (2017), found that dementia incidence was declining among succes-
sive birth cohorts in the Einstein Aging Study. Matthews et al. (2013) found decreasing rates 
of dementia across cohorts in England. Stephan et al. (2018) conducted a systematic review 
of secular trends in dementia, finding that the extant evidence is inconclusive. There is 
evidence for declines, particularly in some high-income nations, however this evidence is 
contradicted by other findings within the same countries. Morovatdar et al. (2022) found an 
increasing burden of disease, including dementia, due to population aging, but found that 
the age-standardized incidence was declining, which was true for their global sample, but 
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especially so for OECD countries. Finally, Grasset et al. (2018), found decreasing dementia 
incidence among women (although not men) during the late 20th century.

An important distinction between our study and some of the aforementioned studies is 
the use of self-report versus algorithmic diagnostic criteria. Our study used self-report 
disease diagnosis, which may be susceptible to changes in diagnostic criteria, and awareness 
among the medical community, among other things, a limitation in any study utilizing self- 
reports. As partial explanation, we note studies (Clouston et al. 2021; Grasset et al. 2018) 
showing that the lack of algorithmic criterion can mask declines in dementia incidence. 
However, even if the sample itself is not becoming sicker, the influx of new diagnoses may 
still represent increased costs as previously undiagnosed cases of dementia become diag-
nosed (and presumably treated) cases of dementia. While this process is likely to improve 
individual well-being, it could represent increased costs that individuals, and society, will 
bear. Of particular importance for our sample, starting in 2009 the British National Health 
Service introduced the “Health Check” for everyone aged 40+ . This program, and others 
like it, may increase detection of disease in more recent years (which would favor detection 
among later-born cohorts). Earlier detection of disease is consistent with our findings.

Although our results, with regard to dementia, may represent some level of increased 
awareness at the individual level, an increase in dementia diagnoses is also consistent with 
the increased prevalence of obesity, which, as previously noted, may be driving the other 
patterns observed. Razay, Vreugdenhil, and Wilcock (2006), found that obesity significantly 
influenced the odds of receiving an Alzheimer diagnosis, as did Ma et al. (2020). In a study 
on the effects of bariatric surgery on mild cognitive impairment, such impairment was 
prevalent among adults with severe obesity, even among younger adults (Rochette et al.  
2016). Similarly, adolescents who had insulin resistance and were obese showed signifi-
cantly elevated levels of amyloid β-protein and presenilin 1, both biomarkers of Alzheimer’s 
disease (Luciano et al. 2015). Moreover, in a correlational study, deliberate weight loss 
among older adults was associated with cognitive improvements (Horie et al. 2016). In 
summary, studies suggest that obesity is related to cognitive impairments that are similar to 
Alzheimer’s disease and related dementias. Given the obesity epidemic, a rising rate of 
diagnosis of dementia and Alzheimer’s disease may be indirectly related to an obesity- 
related increase. Obesity is a tempting candidate explanation, as other obvious potential 
causes have seen marked declines over the same time period (e.g., smoking), and plausible 
protective factors have seen an increase over time (e.g., education).

We have included analyses of cohort differences in mortality in an effort to provide 
a cross-national comparison to previous results (Crimmins et al. 2019), but these results, and 
others like them, should be interpreted cautiously. The results could represent real shifts in 
mortality, but it is possible that survivorship bias could be affecting our results. Survival 
models generally have difficulty with left truncation (i.e., because those who died before the 
study were never included in the study). Unlike disease incidence, in which we had left 
censoring (the exact timing of first occurrence of the disease was not observed, but people 
with the disease could still enter the study), left truncation will have systematic effects across 
cohorts such that the older cohorts will have seen greater levels of left truncation. This would 
bias the results of survival models (only the healthiest members of the oldest cohorts make it 
into the data). For the present analyses, it is possible that mortality has increased for later- 
born cohorts, but it is plausible that some of the patterns could be due to sampling bias. 
Virtually any panel study like the ELSA will have precisely these difficulties. Using other 
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datasets that have different features – for example, one that would provide satisfactory 
measurement approaches to distinguish severity of different diseases – would be valuable 
in future research. Our study does improve upon previous work by accounting for the 
interval censored nature of our data, as well as allowing for left censoring. These features 
give us increased confidence in our results, particularly those for disease incidence.

The present study does call into question whether or not later born cohorts are leading 
healthier lives, at least in England. In research on international populations it remains an open 
question whether trends are positive or negative once aging patterns are accounted for. Our 
results for England suggest the possibility of more negative patterns. We are forced to confront 
the possibility that people may be becoming sicker earlier. If that is true it would require us to 
evaluate what has changed in people’s lives among more recently born cohorts to cause worse 
health.
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